Abstract

Propagation of Love-type waves emanating due to a disturbance point source in a transversely isotropic layer of finite thickness laid over a semi-infinite half-space is investigated. The layer is assumed under the influence of magnetic field and hydrostatic state of stress, while the half-space is inhomogeneous. The source point is situated at the common interface of the layer and half-space. Maxwell’s equation and generalized Ohm’s law have been taken into account to calculate the Laurent force induced in the layer. Green’s function technique and Fourier transform are used as a powerful tool to calculate the interior deformations of the model; consequently, we obtain a closed-form dispersion relation for the wave. Six numerical examples for the transversely isotropic layer, namely, beryl, magnesium, cadmium, zinc, cobalt, and simply isotropic, have been considered. The role of magneto-elastic coupling parameter, hydrostatic stress, inhomogeneity, the order of the depth variation in inhomogeneity function, and different examples of the layer on the propagation of Love-type wave has been observed by numerical examples and graphical demonstrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.