Abstract

Abstract Within the present investigation, a louver slot is employed upstream of an array full-coverage film cooling holes. Cooling air is supplied using a combination arrangement, with cross-flow and impingement together. The louver consists of a row of film cooling holes, contained within a specially designed device that concentrates and directs the coolant from a slot, so that it then advects as a layer downstream along the test surface. This louver-supplied coolant is then supplemented by coolant which emerges from different rows of downstream film cooling holes. The same coolant supply passage is employed for the louver row of holes, as well as for the film cooling holes, such that different louver and film cooling mass flowrates are set by different hole diameters for the two different types of cooling holes. The results are different from data provided by past investigations, because of the use and arrangement of the louver slot, and because of the unique coolant supply configurations. The experimental results are given for mainstream Reynolds numbers from 107,000 to 114,000. Full-coverage blowing ratios are constant with streamwise location along the test surface and range from 3.68 to 5.70. Corresponding louver slot blowing ratios then range from 1.72 to 2.65. Provided are heat transfer coefficient and adiabatic effectiveness distributions, which are measured along the mainstream side of the test plate. Both types of data show less variation with streamwise development location, relative to results obtained without a louver employed, when examined at the same approximate effective blowing ratio, mainstream Reynolds number, cross-flow Reynolds number, and impingement jet Reynolds number. When compared at the same effective blowing ratio or the same impingement jet Reynolds number, spanwise-averaged heat transfer coefficients are consistently lower, especially for the downstream regions of the test plate, when the louver is utilized. With the same type of comparisons, the presence of the louver slot results in significantly higher values of adiabatic film cooling effectiveness (spanwise-averaged), particularly at and near the upstream portions of the test plate. With such characteristics, dramatic increases in thermal protection are provided by the presence of the louver slot, the magnitudes of which vary with the experimental condition and test surface location.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.