Abstract

Lotus-like Ni@NiO embedded porous carbons (Ni@NiO/PCs) were fabricated by pyrolysis of MOF-74/cellulose nanocrystal hybrids, and used as a solid phase microextraction (SPME) coating for ultrasensitive determination of chlorobenzenes (CBs) from water combined with gas chromatography-mass spectrometry. Owing to its abundant chemical groups, high porosity, and excellent thermal stability, the as-prepared Ni@NiO/PCs presented superior extraction performance compared to commercial SPME coatings. Notably, Ni@NiO/PCs derived from MOF-74/CNC hybrids presented higher extraction efficiencies towards CBs than that derived from pristine CNC and MOF-74 due to the formation of micro/mesopores and more abundant oxygen-containing groups. Under the optimum extraction conditions, the proposed analytical method presented wide linearity range (0.5–1500 ng L−1), ultra-low detection of limit (0.005–0.049 ng L−1), and excellent precision with relative standard deviations of 4.7–9.2% for a single fiber and 8.8–10.9% for 5 fibers, and long lifetime (≥160 times). The proposed analytical method was finally applied for determination of CBs from real water samples, and the recoveries were in the range of 93.2–116.8% towards eight CBs. This study delivered a novel and efficient sorbent as SPME coating to extraction and determination of CBs from water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.