Abstract

Drug delivery systems with high drug encapsulation efficiency and controlled release are of great importance in biomedical fields. Herein, we report an ingenious approach inspired from the lotus leaf possessing the ability of strong repellency to water, which enables the rapid fabrication of drug-loaded calcium alginate (Ca-Alg) particles with high drug encapsulation efficiency and controlled drug delivery. The design is achieved by introducing aqueous droplets containing the mixture of dilute sodium alginate solution, dilute calcium chloride solution, and drug onto the superhydrophobic substrate. Due to water evaporation both the concentration of sodium alginate and calcium chloride within the droplets will gradually increase, and the ionic crosslinking reaction of sodium alginate with Ca2+ is further occurred to form the drug-embedded Ca-Alg hydrogel particles. The results indicate that the controllable fabrication of Ca-Alg particles can be easily achieved on the superhydrophobic surface, and the swelling behavior can be tuned by the pH of the buffer solution. Importantly, the drug encapsulation efficiencies are measured to be over 88% and the drug exhibits obvious pH responsive release. Findings from this study are expected to contribute to the rational design of drug delivery systems with high drug encapsulation efficiency and controlled release for pharmaceutic science and tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.