Abstract
We address a variant of the single item lot sizing problem affected by proportional storage (or inventory) losses and uncertainty in the product demand. The problem has applications in, among others, the energy sector, where storage losses (or storage deteriorations) are often unavoidable and, due to the need for planning ahead, the demands can be largely uncertain. We first propose a two-stage robust optimization approach with second-stage storage variables, showing how the arising robust problem can be solved as an instance of the deterministic one. We then consider a two-stage approach where not only the storage but also the production variables are determined in the second stage. After showing that, in the general case, solutions to this problem can suffer from acausality (or anticipativity), we introduce a flexible affine rule approach which, albeit restricting the solution set, allows for causal production plans. A hybrid robust-stochastic approach where the objective function is optimized in expectation, as opposed to in the worst-case, while retaining robust optimization guarantees of feasibility in the worst-case, is also discussed. We conclude with an application to heat production, in the context of which we compare the different approaches via computational experiments on real-world data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.