Abstract
AbstractIn this article, we provide a comprehensive analyses of two continuous review lost sales inventory system based on different replenishment policies, namely $(s,S)$ and $(s,Q)$. We assume that the arrival times of demands form a Poisson process and that the demand sizes have i.i.d. exponential distribution. We assume that the items in stock may obsolete after an exponential time. The lead time for replenishment is exponential. We also assume that the excess demands and the demands that occurred during stock out periods are lost. Using the system point method of level crossing and integral equation method, we derive the steady-state probability distribution of inventory level explicitly. After deriving some system performance measures, we computed the total expected cost rate. We also provide numerical examples of sensitivity analyses involving different parameters and costs. As a result of our numerical analysis, we provide several insights on the optimal $(s,S)$ and $(s,Q)$ policies for inventory systems of obsolescence items with positive lead times. The better policy for maintaining inventory can be quantified numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Probability in the Engineering and Informational Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.