Abstract

Optimisation of water distribution system design is a well-established research field, which has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of a proposed pipe network infrastructure. This paper reviews in a systematic manner articles published over the past three decades, which are relevant to the design of new water distribution systems, and the strengthening, expansion and rehabilitation of existing water distribution systems, inclusive of design timing, parameter uncertainty, water quality, and operational considerations. It identifies trends and limits in the field, and provides future research directions. Exclusively, this review paper also contains comprehensive information from over one hundred and twenty publications in a tabular form, including optimisation model formulations, solution methodologies used, and other important details.

Highlights

  • Water distribution systems (WDSs) are one of the major infrastructure assets of the society, with new systems being continually developed reflecting the population growth, and existing systems being upgraded and extended due to raising water demands

  • While comparing to a traditional deterministic design, the results indicate that a flexible design has a higher initial cost [122,136], which enables the system to adapt to various future conditions

  • The publications included in this review are relevant to the design of new WDSs, strengthening, expansion and rehabilitation of existing WDSs, and consider design timing, parameter uncertainty, water quality and operational aspects

Read more

Summary

Introduction

Water distribution systems (WDSs) are one of the major infrastructure assets of the society, with new systems being continually developed reflecting the population growth, and existing systems being upgraded and extended due to raising water demands. Designing economically effective WDSs is a complex task, which involves solving a large number of simultaneous nonlinear network equations, and at the same time, optimising sizes, locations, and operational statuses of network components such as pipes, pumps, tanks and valves [1]. This task becomes even more complex when the optimisation problem involves a larger number of requirements for the designed system to comply with (e.g., water quality), includes additional objectives beside a least-cost economic measure (e.g., potential fire damage) and incorporates more real-life aspects (e.g., uncertainty, staging of construction). The development of the optimisation of WDS design, had been an incremental process over time and may have appeared to be “only too true that the design of the transmission and distribution system receives [at that period] little attention in spite of the great sums of money invested in such installations” [8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.