Abstract
We present a lossy mode resonance (LMR) sensor fabricated by chemical bath deposition (CBD) using a U-shaped optical fiber with an exposed core. The ZnO particles that generate LMR were prepared by a very costly method in three steps via permanganate activation and the deposition of ZnO on the fiber core using CBD. The process of deposition was monitored in real time through the optical fiber, and a clear absorption spectrum with an LMR peak was obtained. The surface of the sensor with absorbance reaching 1.0 was covered with nano- to submicron particles of ZnO. The refractive index (RI) sensitivity of the sensor was measured using sucrose solution and was found to increase as the amounts of ZnO on the sensor increased, reaching 23 Abs/RI unit (RIU). The RI resolutions of the sensors with absorbance reaching 0.40, 0.65, and 1.0 during CBD were determined as ΔRI = 0.000060, 0.00017, and 0.00018, respectively, with a 99.7% confidence interval for the RI. Pretreatment during CBD was found to dramatically affect the fabrication of LMR sensors owing to their size and occupancy of deposited ZnO particles, the effects of which can be observed in real time using fiber optics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.