Abstract

Lossy coding of correlated sources over a multiple access channel (MAC) is studied. First, a joint source-channel coding scheme is presented when the decoder has correlated side information. Next, the optimality of separate source and channel coding that emerges from the availability of a common observation at the encoders or side information at the encoders and the decoder is investigated. It is shown that separation is optimal when the encoders have access to a common observation whose lossless recovery is required at the decoder, and the two sources are independent conditioned on this common observation. Optimality of separation is also proved when the encoder and the decoder have access to shared side information conditioned on which the two sources are independent. These separation results obtained in the presence of side information are then utilized to provide a set of necessary conditions for the transmission of correlated sources over a MAC without side information. Finally, by specializing the obtained necessary conditions to the transmission of binary and Gaussian sources over a MAC, it is shown that they can potentially be tighter than the existing results in the literature, providing a novel converse for this fundamental problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.