Abstract
Predictive coding has proven to be an effective method for lossless image compression. In predictive coding, untrans-mitted pixels are predicted based on the pixels already available at the decoder. Prediction errors are then compressed by entropy coding, and the original image can be reconstructed exactly at the decoder. More accurate prediction decreases the entropy of the prediction error, allowing for increased compression. Conventional image prediction methods rely on information from the immediate local neighborhood of each pixel. We introduce a novel predictor that leverages non-local structural similarities which have been shown to be effective in image denoising and deblurring applications. Experimental results show that the proposed method achieves state-of-the-art compression performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.