Abstract
In this paper, the effects of quantization noise feedback on the entropy of Laplacian pyramids are investigated. This technique makes it possible for the maximum absolute reconstruction error to be easily and strongly upper-bounded (near-lossless coding), and therefore, allows reversible compression. The entropy-minimizing optimum quantizer is obtained by modeling the first-order distributions of the differential signals as Laplacian densities, and by deriving a model for the equivalent memoryless entropy. A novel approach, based on an enhanced Laplacian pyramid, is proposed for the compression, either lossless or lossy, of gray-scale images. Major details are prioritized through a content-driven decision rule embedded in a uniform threshold quantizer with noise feedback. Lossless coding shows improvements over reversible Joint Photographers Expert Group (JPEG) and the reduced-difference pyramid schemes, while lossy coding outperforms JPEG, with a significant peak signal-to-noise ratio (PSNR) gain. Also, subjective quality is higher even at very low bit rates, due to the absence of the annoying impairments typical of JPEG. Moreover, image versions having resolution and SNR that are both progressively increasing are made available at the receiving end from the earliest retrieval stage on, as intermediate steps of the decoding procedure, without any additional cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.