Abstract
In past years, there have been several improvements in lossless image compression. All the recently proposed state-of-the-art lossless image compressors can be roughly divided into two categories: single and double-pass compressors. Linear prediction is rarely used in the first category, while TMW, a state-of-the-art double-pass image compressor, relies on linear prediction for its performance. We propose a single-pass adaptive algorithm that uses context classification and multiple linear predictors, locally optimized on a pixel-by-pixel basis. Locality is also exploited in the entropy coding of the prediction error. The results we obtained on a test set of several standard images are encouraging. On the average, our ALPC obtains a compression ratio comparable to CALIC while improving on some images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.