Abstract

SummaryMost unmanned aerial vehicle path‐planning problems have been modeled as linear optimal control problems, ie, as mixed‐integer linear programming problems. However, most constraints cannot be described accurately in linear form in practical engineering applications. In this paper, the traditional unmanned aerial vehicle path‐planning problem is modified as a nonconvex mixed‐integer nonlinear programming problem, whose continuous relaxation is a nonconvex programming problem. A lossless convexification method is introduced into the generalized Benders decomposition algorithm framework. Thus, an optimal solution can be obtained without directly solving the nonconvex programming problem. The output of the proposed algorithm has been rigorously proved to be the optimal solution to the original problem. Meanwhile, the simulation results verify the validity of the theoretical analysis and demonstrate the superior efficiency of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.