Abstract
AbstractMedical digital imaging technologies produce daily a huge amount of data (data obtained by magnetic resonance, computed tomography and ultrasound examinations, functional resonance magnetic acquisitions, etc.), which is generally stored in ad-hoc repositories or it is transmitted to other entities, such as research centers, hospital structures, etc.. These data need efficient compression, in order to optimize memory space and transmission costs. In this work, we introduce an efficient lossless algorithm that can be used for the compression of volumetric multidimensional medical image sequences. This approach can be also used, in conjunction with Augmented Reality techniques, to save in a database or to transmit on a communication line the outcomes of surgical decisions or medical applications. We experimentally test our approach on a test set of 3-D computed tomography (CT), 3-D magnetic resonance (MR) images, and of 5-D functional Magnetic Resonance Images (fMRI). The achieved results outperform the other state-of-the-art approaches.KeywordsMultidimensional medical images compressionMultidimensional medical images codingMultidimensional data compression
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.