Abstract

In this letter a new algorithm for lossless compression of hyperspectral images using hybrid context prediction is proposed. Lossless compression algorithms are typically divided into two stages, a decorrelation stage and a coding stage. The decorrelation stage supports both intraband and interband predictions. The intraband (spatial) prediction uses the median prediction model, since the median predictor is fast and efficient. The interband prediction uses hybrid context prediction. The hybrid context prediction is the combination of a linear prediction (LP) and a context prediction. Finally, the residual image of hybrid context prediction is coded by the arithmetic coding. We compare the proposed lossless compression algorithm with some of the existing algorithms for hyperspectral images such as 3D-CALIC, M-CALIC, LUT, LAIS-LUT, LUT-NN, DPCM (C-DPCM), JPEG-LS. The performance of the proposed lossless compression algorithm is evaluated. Simulation results show that our algorithm achieves high compression ratios with low complexity and computational cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.