Abstract

With the rapid development of hyperspectral remote sensing technology, the spatial resolution and spectral resolution of hyperspectral images are continually increasing, resulting in a continual increase in the scale of hyperspectral data. At present, hyperspectral lossless compression technology has reached a bottleneck. Simultaneously, the rise of deep learning has provided us with new ideas. Therefore, this paper examines the use of deep learning for the lossless compression of hyperspectral images. In view of the differential pulse code modulation (DPCM) method being insufficient for predicting spectral band information, the proposed method, called C-DPCM-RNN, uses a deep recurrent neural network (RNN) to improve the traditional DPCM method and improve the generalization ability and prediction accuracy of the model. The final experimental result shows that C-DPCM-RNN achieves better compression on a set of calibrated AVIRIS test images provided by the Multispectral and Hyperspectral Data Compression Working Group of the Consultative Committee for Space Data Systems in 2006. C-DPCM-RNN overcomes the limits of traditional methods in its performance on uncalibrated AVIRIS test images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call