Abstract

Dynamic verification and validation (V&V) techniques are used to verify and validate the behavior of software systems early in the development process. In the context of model-driven engineering, such behaviors are usually defined using executable domain-specific modeling languages (xDSML). Many V&V techniques rely on execution traces to represent and analyze the behavior of executable models. Traces, however, tend to be overwhelmingly large, hindering effective and efficient analysis of their content. While there exist several trace metamodels to represent execution traces, most of them suffer from scalability problems. In this paper, we present a generic compact trace representation format called generic compact trace metamodel (CTM) that enables the construction and manipulation of compact execution traces of executable models. CTM is generic in the sense that it supports a wide range of xDSMLs. We evaluate CTM on traces obtained from real-world fUML models. Compared to existing trace metamodels, the results show a significant reduction in memory and disk consumption. Moreover, CTM offers a common structure with the aim to facilitate interoperability between existing trace analysis tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.