Abstract

This paper presents a loss evaluation of ferrite-cored wireless power transfer (WPT) systems using conductive and magnetic shield materials. The modelling and analyses of the coil systems were implemented using the finite element method. Three coil systems were modelled-circular coils, rectangular coils and flux-pipe coil system using magnetic shields (Mumetal and electrical steel) and conductive shields (aluminum and copper). From the results presented in the analyses, it was noted that ohmic losses and core losses in the WPT system are independent of the type of conductive shield used. Similarly, it was noted that the self-inductance, coupling coefficient and losses in the system is affected by the type of magnetic shield used. For the flux-pipe resonant coil system, high power losses were recorded when a magnetic shield was used as the shielding topology while low power losses were recorded in the circular coil and rectangular coil resonant systems when the magnetic shield was used as the shielding material. For optimal WPT system requiring low eddy current losses, it was established that copper shield is the appropriate choice for flux-pipe resonant coils while electrical steel is the suitable shield material for the circular resonant coil and rectangular resonant coil systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.