Abstract

ZC4H2 encodes a C4H2-type zinc finger protein, mutations of which lead to a spectrum of diseases known as ZC4H2 associated rare disorders (ZARD). In addition to neurological phenotypes, the most typical symptoms of ZARD are multiple joint contractures of varying degrees, accompanied by abnormal development of muscles and bones, and osteoporosis in some cases. The pathogenic mechanisms of such bone related phenotypes, however, remain unclear. Here, we showed that ZC4H2 is expressed in the developing bones in mice. ZC4H2 knockout mice were neonatal-lethal and smaller in size, with reduced calcification of long bones. Upon induced loss of ZC4H2 postnatally, the femoral bones developed an osteoporosis-like phenotype, with reduced bone mineral density, bone-volume fraction, and trabecular bone number. Knockdown of ZC4H2 showed no clear effect on the expression of osteogenic differentiation genes in in vitro models using mesenchymal stem cells. Interestingly, ZC4H2 knockdown significantly enhanced osteoclast differentiation and bone resorption in induced bone marrow-derived macrophages. We further confirmed that the number of osteoclasts in the long bone of ZC4H2 knockout mice was increased, as well as the expression of the serum bone resorption/osteoporosis marker CTX-1. Our study unveils a new role of ZC4H2 in osteoclast differentiation and bone development, providing new clues on the pathology of ZARD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.