Abstract

Activation of the Wnt/β-catenin signaling pathway is common in various human cancers. The aim of this study was to investigate the expression of 2 members of the Wnt family (WIF-1 and Wnt5a) in sporadic and hereditary breast cancer tissues. WIF-1, is a secreted antagonist that binds Wnt ligands, and therefore inhibits the canonical Wnt/β-catenin pathway. Wnt5a is one of the members of the noncanonical Wnt family that mainly acts through calcium signaling pathway. The expression of WIF-1 was analyzed by methylation-specific PCR and RT-PCR, and the level of Wnt5a ligand was quantified by RT-QPCR in breast cancer tissues. Methylation of WIF-1 was detected in 71.3 % and 81.8 % of sporadic and hereditary cases, respectively. Aberrant methylation of WIF-1 was associated with advanced TNM stage and triple negative cases in sporadic breast carcinoma (p=0.001 and p=0.037, respectively). In hereditary cases, methylation of WIF-1 correlated with age at diagnosis (p=0.027) and p53 status (p=0.035). Regarding patients' survival, WIF-1 methylated promoter conferred a reduced overall survival rate, and particularly in a group of patients with advanced TNM stage (p log rank=0.006). Furthermore, aberrant CpG methylation of the WIF-1 promoter was significantly associated with transcriptional silencing of this tumor suppressor gene in sporadic breast cancer tissues (p=0.036). On the other hand, in sporadic tumor tissues, the level of Wnt5a mRNA was significantly lower compared to normal tissues (p=0.031) and lower still in those showing more aggressive behavior, suggesting that Wnt5a, a ligand involved in the noncanonical Wnt/β-catenin pathway, could act as a tumor suppressor gene in breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call