Abstract
Alzheimer's disease (AD) is a heterogeneous disease with complex clinicopathological characteristics. To date, the role of m6A RNA methylation in monocyte-derived macrophages involved in the progression of AD is unknown. In our study, we found that methyltransferase-like 3 (METTL3) deficiency in monocyte-derived macrophages improved cognitive function in an amyloid beta (Aβ)-induced AD mouse model. The mechanistic study showed that that METTL3 ablation attenuated the m6A modification in DNA methyltransferase 3A (Dnmt3a) mRNAs and consequently impaired YTH N6-methyladenosine RNA binding protein 1 (YTHDF1)-mediated translation of DNMT3A. We identified that DNMT3A bound to the promoter region of alpha-tubulin acetyltransferase 1 (Atat1) and maintained its expression. METTL3 depletion resulted in the down-regulation of ATAT1, reduced acetylation of α-tubulin and subsequently enhanced migration of monocyte-derived macrophages and Aβ clearance, which led to the alleviated symptoms of AD. Collectively, our findings demonstrate that m6A methylation could be a promising target for the treatment of AD in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.