Abstract

The durability of thermally modified (TM) and untreated (UT) mini-stakes exposed to in-ground contact was compared by modulus of elasticity (MOE) and mass loss with decay type using microscopy. Results showed a strong correlation between MOE and soft rot decay for UT stakes over a 30 month exposure period. For TM stakes, the correlation between MOE and decay rate (soft rot/bacteria) was not as strong. Loss of MOE of the TM stakes is suggested to be accentuated by the extensive micro-checking produced in the TM wood tracheids during the original heat treatment. The micro-checks are thought to expand during the winter season due to water expansion during freezing, thereby leading to weakening of the wood in addition to the decay caused by soft rot and bacteria. Using molecular methods, Phialophora hoffmannii was identified as the main fungus causing soft rot decay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.