Abstract

Brain ischemia is associated with an acute release of pro-inflammatory cytokines, notably TNF-alpha and IL-6 and failure of the blood-brain barrier. Shear stress, hypoxia-hypoglycemia, and blood leukocytes play a significant role in blood-brain barrier failure during transient or permanent ischemia. However, these mechanisms have not been studied as independent variables for in vitro ischemia. The present study, using a dynamic in vitro blood-brain barrier model, showed that flow cessation/reperfusion under normoxia-normoglycemia or hypoxia-hypoglycemia without blood leukocytes in the luminal perfusate had a modest, transient effect on cytokine release and blood-brain barrier permeability. By contrast, exposure to normoxic-normoglycemic flow cessation/reperfusion with blood leukocytes in the luminal perfusate led to a significant increase in TNF-alpha and IL-6, accompanied by biphasic blood-brain barrier opening. Enhanced permeability was partially prevented with an anti-TNF-alpha antibody. In leukocyte-free cartridges, the same levels of IL-6 had no effect, while TNF-alpha caused a moderate increase in blood-brain barrier permeability, suggesting that blood leukocytes are the prerequisite for cytokine release and blood-brain barrier failure during reduction or cessation of flow. These cells induce release of TNF-alpha early after ischemia/reperfusion; TNF-alpha triggers release of IL-6, since blockade of TNF-alpha prevents IL-6 release, whereas blockade of IL-6 induces TNF-alpha release. Pre-treatment of blood leukocytes with the cyclooxygenase (COX) inhibitor, ibuprofen, inhibited cytokine release and completely preserved blood-brain barrier permeability during the reperfusion period. In conclusion, loss of flow (flow cessation/reperfusion) independent of hypoxia-hypoglycemia plays a significant role in blood-brain barrier failure by stimulating leukocyte-mediated inflammatory mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.