Abstract

In this paper we examine the generalized Buckley-Leverett equations governing threephase immiscible, incompressible flow in a porous medium, in the absence of gravitational and diffusive/dispersive effects. We consider the effect of the relative permeability models on the characteristic speeds in the flow. Using a simple idea from projective geometry, we show that under reasonable assumptions on the relative permeabilities there must be at least one point in the saturation triangle at which the characteristic speeds are equal. In general, there is a small region in the saturation triangle where the characteristic speeds are complex. This is demonstrated with the numerical results at the end of the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.