Abstract

Background. The RAS-association domain family 1 A (RASSF1A) is a classical member of RAS effectors regulating cell proliferation and apoptosis. Loss of RASSF1A expression may shift the balance towards a growth-promoting effect without the necessity of activating K-ras mutations. Its potential association with K-ras mutations in colorectal cancer (CRC) is unclear. Methods. RASSF1A expression was examined in normal mucosa, adenoma, and tumor tissues of colon and rectum, respectively. We examined the association of RASSF1A expression, mutations of K-ras, and EGFR status in 76 primary CRCs. The relationship between clinicopathological characteristics and RASSF1A expression was also analyzed. Results. RASSF1A expression level decreased progressively in normal mucosa, adenoma and, tumor tissues, and the loss of RASSF1A expression occurred more frequently in tumor tissues. Of 76 primary CRCs, loss of RASSF1A expression and/or K-ras mutations were detected in 77% cases. Loss of RASSF1A expression was more frequent in K-ras wild-type than in mutation cases (63% versus 32%, P = 0.011). Conclusions. Our study indicates that loss of RASSF1A may be involved in pathogenesis of CRC, its expression was found predominantly in K-ras wild-type CRCs, suggesting that it may be another way of affecting RAS signaling, in addition to K-ras mutations.

Highlights

  • Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies worldwide and is still carrying a high morbidity and mortality

  • RAS-association domain family 1 A (RASSF1A) expression was detected in normal mucosa, adenoma, and tumor tissues of colorectal cancer (CRC) patients

  • We investigated expression of RASSF1A, K-ras mutation, and EGFR expression and analyzed the relationships between them in primary CRC in an attempt to understand the role of RASSF1A in RAS-mediated oncogenic transformation

Read more

Summary

Introduction

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies worldwide and is still carrying a high morbidity and mortality. At least 50% of CRCs are thought to have a dysregulation of the RAS-RAF-MEKERK ( known as the mitogen-activated protein kinase, MAPK) pathway [1, 2]. Among those molecules, K-ras plays an essential role in the initiation of MAPK pathway and has been widely established as an important oncogene since the first report about its mutation [3]. Our study indicates that loss of RASSF1A may be involved in pathogenesis of CRC, its expression was found predominantly in K-ras wild-type CRCs, suggesting that it may be another way of affecting RAS signaling, in addition to K-ras mutations

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call