Abstract

Cellular senescence can result from short, dysfunctional telomeres, oxidative stress, or oncogene expression, and may contribute to aging. To investigate the role of cellular senescence in aging it is necessary to define the time-dependent molecular events by which it is characterized. Here we investigated changes in levels of key proteins involved in cell cycle regulation, DNA replication, and stress resistance in senescing human fibroblasts following oxidative stress. An immediate response in stressed cells was dephosphorylation of retinoblastoma (Rb) and cessation of DNA synthesis. This was followed by sequential induction of p53, p21, and p16. Increase in hypophosphorylated Rb and induction of p53 and p21 by a single stress treatment was transient, whereas sustained induction or dephosphorylation were achieved by a second stress. Down-regulation of the critical DNA replication initiation factor Cdc6 occurred early after stress concurring with p53 induction, and was followed by a decrease in Mcm2 levels. A late event in the stress-induced molecular sequence was the induction of SOD1, catalase, and HSP27 coinciding with development of the fully senescent phenotype. Our data suggest that loss of proliferative capacity in oxidatively stressed cells is a multistep process regulated by time-dependent molecular events that may play differential roles in induction and maintenance of cellular senescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.