Abstract

Patients with Alzheimer's disease (AD) experience seizures at higher rates than the general population of that age, suggesting an underexplored role of hyperexcitability in AD. Genetic variants in presenilin (PSEN) 1 and 2 genes lead to autosomal dominant early-onset AD (ADAD); patients with PSEN gene variants also report seizures. Pharmacological control of seizures in AD may be disease-modifying. Preclinical efficacy of FDA-approved antiseizure drugs (ASDs) is well defined in young adult rodents; however, the efficacy of ASDs in aged rodents with chronic seizures is less clear. The mechanism by which ADAD genes lead to AD remains unclear, and even less studied is the pathogenesis of epilepsy in AD. PSEN variants generally all result in a biochemical loss of function (De Strooper, 2007). We herein determined whether well-established models of acute and chronic seizure could be used to explore the relationship between AD genes and seizures through investigating whether loss of normal PSEN2 function age-dependently influenced susceptibility to seizures and/or corneal kindling acquisition. PSEN2 knockout (KO) and age-matched wild-type (WT) mice were screened from 2- to 10-months-old to establish age-dependent focal seizure threshold. Additionally, PSEN2 KO and WT mice aged 2- and 8-months-old underwent corneal kindling such that mice were aged 3- and 9-months old at the beginning of ASD efficacy testing. We then defined the dose-dependent efficacy of mechanistically distinct ASDs on kindled seizures of young versus aged mice to better understand the applicability of corneal kindling to real-world use for geriatric patients. PSEN2 KO mice demonstrated early-life reductions in seizure threshold. However, kindling acquisition was delayed in 2-month-old PSEN2 KO versus WT mice. Young male WT mice took 24.3 ± 1.3 (S.E.M.) stimulations to achieve kindling criterion, whereas age-matched PSEN2 KO male mice took 41.2 ± 1.1 stimulations (p < .0001). The rate of kindling acquisition of 8-month-old mice was no longer different from WT. This study demonstrates that loss of normal PSEN2 function is associated with age-dependent changes in the in vivo susceptibility to acute seizures and kindling. Loss of normal PSEN2 function may be an underexplored molecular contributor to seizures. The use of validated models of chronic seizures in aged rodents may uncover age-related changes in susceptibility to epileptogenesis and/or ASD efficacy in mice with AD-associated genotypes, which may benefit the management of seizures in AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.