Abstract

The incidence of preterm birth is rising worldwide. Among preterm infants, many face a lifetime of neurologic impairments. Recent studies have revealed that systemic inflammation can sensitize the immature brain to hypoxic-ischemic (HI) injury. Therefore, it is important to identify the mechanisms involved in inflammation-sensitized HI injury in immature brains. PTEN-induced putative kinase 1 (PINK1) is a regulatory protein that is highly expressed in the brain. We have previously found that PINK1 gene knockout can protect matured brains from HI injury in postnatal day 10 mice. However, the mechanisms are unknown. In this study, we employed an inflammation-sensitized HI injury model using postnatal day 3 mice to study the roles and mechanisms that PINK1 plays in the immature brains. Lipopolysaccharide (LPS) was injected intraperitoneally into the mice before HI treatment to set up the model. We found that PINK1-knockout mice had fewer brain infarcts and less cell apoptosis than did the wild-type mice. Furthermore, we found that α-synuclein was markedly higher in the PINK1-knockout mice than in the wild-type mice, and inhibition of α-synuclein through small interfering RNA (siRNA) reversed the protective effect in the PINK1-knockout mice. Collectively, these findings indicate that loss of PINK1 plays a novel role in the protection of inflammation-sensitized HI brain damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.