Abstract
IntroductionDespite the benefits of endocrine therapies such as tamoxifen and aromatase inhibitors in treating estrogen receptor (ER) alpha-positive breast cancer, many tumors eventually become resistant. The molecular mechanisms governing resistance remain largely unknown. Pigment epithelium-derived factor (PEDF) is a multifunctional secreted glycoprotein that displays broad anti-tumor activity based on dual targeting of the tumor microenvironment (anti-angiogenic action) and the tumor cells (direct anti-tumor action). Recent studies indicate that PEDF expression is significantly reduced in several tumor types, including breast cancer, and that its reduction is associated with disease progression and poor patient outcome. In the current study, we investigated the role of PEDF in the development of endocrine resistance in breast cancer.MethodsPEDF mRNA and protein levels were measured in several endocrine-resistant breast cancer cell lines including MCF-7:5C, MCF-7:2A, and BT474 and in endocrine-sensitive cell lines MCF-7, T47D, and ZR-75-1 using real-time PCR and western blot analyses. Tissue microarray analysis and immunohistochemistry were used to assess the PEDF protein level in tamoxifen-resistant breast tumors versus primary tumors. Lentiviruses were used to stably express PEDF in endocrine-resistant breast cancer cell lines to determine their sensitivity to tamoxifen following PEDF re-expression.ResultsWe found that PEDF mRNA and protein levels were dramatically reduced in endocrine-resistant MCF-7:5C, MCF-7:2A, and BT474 breast cancer cells compared with endocrine-sensitive MCF-7, T47D, and ZR-75-1 cells, and that loss of PEDF was associated with enhanced expression of pSer167ERα and the receptor tyrosine kinase rearranged during transfection (RET). Importantly, we found that silencing endogenous PEDF in tamoxifen-sensitive MCF-7 and T47D breast cancer cells conferred tamoxifen resistance whereas re-expression of PEDF in endocrine-resistant MCF-7:5C and MCF-7:2A cells restored their sensitivity to tamoxifen in vitro and in vivo through suppression of RET. Lastly, tissue microarray studies revealed that PEDF protein was reduced in ~52.4% of recurrence tumors (31 out of 59 samples) and loss of PEDF was associated with disease progression and poor patient outcome.ConclusionOverall, these findings suggest that PEDF silencing might be a novel mechanism for the development of endocrine resistance in breast cancer and that PEDF expression might be a predictive marker of endocrine sensitivity.
Highlights
Despite the benefits of endocrine therapies such as tamoxifen and aromatase inhibitors in treating estrogen receptor (ER) alpha-positive breast cancer, many tumors eventually become resistant
We found that Pigment epithelium-derived factor (PEDF) mRNA and protein levels were dramatically reduced in endocrine-resistant MCF-7:5C, MCF-7:2A, and BT474 breast cancer cells compared with endocrine-sensitive MCF-7, T47D, and ZR-75-1 cells, and that loss of PEDF was associated with enhanced expression of pSer167ERa and the receptor tyrosine kinase rearranged during transfection (RET)
Overall, these findings suggest that PEDF silencing might be a novel mechanism for the development of endocrine resistance in breast cancer and that PEDF expression might be a predictive marker of endocrine sensitivity
Summary
Despite the benefits of endocrine therapies such as tamoxifen and aromatase inhibitors in treating estrogen receptor (ER) alpha-positive breast cancer, many tumors eventually become resistant. 70% of breast cancers express ERa [1,2], and its presence in breast tumors is routinely used to predict a response to endocrine therapy such as tamoxifen - an anti-estrogen that blocks estrogen-stimulated breast cancer cell growth - or aromatase inhibitors (AIs) - agents that suppress estrogen synthesis in the body. These agents are highly effective and are less toxic compared with chemotherapy, and are often offered to ER-positive breast cancer patients to sustain a better quality of life [3,4]. There is strong evidence that endocrine resistance is associated with cross-talk between upstream kinases and ERa, resulting in estrogen-independent activation of the ERa; the exact mechanism by which breast cancer cells develop resistance to endocrine therapy is still not fully understood
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.