Abstract
AbstractOriginality measures how different a given species is from all other co‐occurring species regarding either their phylogenetic history or functional traits. Since it is important to preserve the various aspects of diversity and original species carry more phylogenetic or functional information, originality may be used to assign conservation priorities. Our goal was to evaluate the relationships between phylogenetic and functional originalities, and their simulated losses under extinction scenarios based on abundance, fire tolerance and habitat preference. We placed 100 plots in a cerrado reserve located in central Brazil, sampled all woody plants species within the plots, measured 14 functional traits and measured fire history. We assembled a phylogenetic tree and a functional dendrogram, with which we calculated the originalities. Phylogenetic‐ and functional‐based originalities were correlated. However, the loss of functional originality was different from random extinctions on the abundance and fire tolerance scenarios, whereas the loss of phylogenetic originality was not. When compared with phylogenetic originality, functional originality brought more information to be used in conservation strategies because it was sensitive to differences in species abundance and fire tolerance. Thus, the extinction of rare or fire‐sensitive species would result in important functional changes due to loss of distinctive traits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.