Abstract

The interaction of two-dimensional (2D) nanomaterials with biological membranes has important implications for ecotoxicity and human health. In this study, we use a dye-leakage assay to quantitatively assess the disruption of a model phospholipid bilayer membrane (i.e., lipid vesicles) by five emerging 2D nanomaterials: graphene oxide (GO), reduced graphene oxide (rGO), molybdenum disulfide (MoS2), copper oxide (CuO), and iron oxide (α-Fe2O3). Leakage of dye from the vesicle inner solution, which indicates loss of membrane integrity, was observed for GO, rGO, and MoS2 nanosheets but not for CuO and α-Fe2O3, implying that 2D morphology by itself is not sufficient to cause loss of membrane integrity. Mixing GO and rGO with lipid vesicles induced aggregation, whereas enhanced stability (dispersion) was observed with MoS2 nanosheets, suggesting different aggregation mechanisms for the 2D nanomaterials upon interaction with lipid bilayers. No loss of membrane integrity was observed under strong oxidative condi...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call