Abstract
Reduced phosphorylation of the tumor suppressor p27Kip1 (p27) at serine 10 (Ser10) is a hallmark of advanced human and mouse atherosclerosis. Apolipoprotein E-null mice defective for this posttranslational modification (apoE−/−p27Ser10Ala) exhibited increased atherosclerosis burden at late disease states. Here, we investigated the regulation of p27 phosphorylation in Ser10 at the very initial stages of atherosclerosis and its impact on endothelial-leukocyte interaction and early plaque formation. Hypercholesterolemia in fat-fed apoE−/− mice is associated with a rapid downregulation of p27-phospho-Ser10 in primary endothelial cells (ECs) and in aorta prior to the development of macroscopically-visible lesions. We find that lack of p27 phosphorylation at Ser10 enhances the expression of adhesion molecules in aorta of apoE−/− mice and ECs, and augments endothelial-leukocyte interactions and leukocyte recruitment in vivo. These effects correlated with increased RhoA/Rho-associated coiled-coil containing protein kinase (ROCK) signaling in ECs, and inhibition of this pathway with fasudil reduced leukocyte-EC interactions to control levels in the microvasculature of p27Ser10Ala mice. Moreover, apoE−/−p27Ser10Ala mice displayed increased leukocyte recruitment and homing to atherosusceptible arteries and augmented early plaque development, which could be blunted with fasudil. In conclusion, our studies demonstrate a very rapid reduction in p27-phospho-Ser10 levels at the onset of atherogenesis, which contributes to early plaque build-up through RhoA/ROCK-induced integrin expression in ECs and enhanced leukocyte recruitment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.