Abstract

Selective inhibition of the BCR/ABL tyrosine kinase by imatinib has become a first-line therapy for chronic myelogenous leukemia (CML). However, BCR/ABL-positive progenitors often persist despite treatment, and relapse associated with resistance to imatinib has been described in many patients with advanced disease. Drug efflux by P-glycoprotein (P-gp), as well as point mutations in BCR/ABL oncoprotein, has been implicated in the mechanism of resistance to imatinib. In this study, we established a murine transplantation model of CML-like myeloproliferative disease using Mdr1a/1b-null mice and analyzed the effects of loss of P-gp on resistance to imatinib. We found that mice transplanted with Mdr1a/1b-null bone marrow (BM) that had been transduced with a BCR/ABL retroviral vector displayed similar responses to imatinib, compared with those transplanted with BCR/ABL-transduced wild-type BM. In the absence of P-gp, the incidence and latency of disease in secondary recipients was not changed in imatinib-treated mice, relative to wild-type controls. Furthermore, K562 cells engineered to overexpress P-gp remained sensitive to imatinib-induced growth inhibition and cell death. Together, our findings suggest that P-gp expression in hematopoietic stem cells does not significantly contribute to imatinib resistance in CML.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call