Abstract
The DBA/2J mouse line develops essential iris atrophy, pigment dispersion, and glaucomatous age-related changes, including an increase of IOP, optic nerve atrophy, and retinal ganglion cell (RGC) death. The aim of this study was to evaluate possible morphological changes in the outer retina of the DBA/2J mouse concomitant with disease progression and aging, based on the reduction of both the a- and b-waves and photopic flicker ERGs in this mouse line. Vertically sectioned DBA/2J mice retinas were evaluated at 3, 8, and 16 months of age using photoreceptor, horizontal, and bipolar cell markers. Sixteen-month-old C57BL/6 mice retinas were used as controls. The DBA/2J mice had outer retinal degeneration at all ages, with the most severe degeneration in the oldest retinas. At 3 months of age, the number of photoreceptor cells and the thickness of the OPL were reduced. In addition, there was a loss of horizontal and ON-bipolar cell processes. At 8 months of age, RGC degeneration occurred in patches, and in the outer retina overlying these patches, cone morphology was impaired with a reduction in size as well as loss of outer segments and growth of horizontal and bipolar cell processes into the outer nuclear layer. At 16 months of age, connectivity between photoreceptors and horizontal and bipolar cell processes overlying these patches was lost. Retinal degeneration in DBA/2J mice includes photoreceptor death, loss of bipolar and horizontal cell processes, and loss of synaptic contacts in an aging-dependent manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.