Abstract

Nicotinic acetylcholine receptors (nAChRs) in the basal ganglia are a potential target for new therapeutics for Parkinson's disease. As an approach to detect expression of nAChRs in monkeys, we used 125I-epibatidine, an agonist at nAChRs containing alpha2 to alpha6 subunits. 125I-Epibatidine binding sites are expressed throughout the control monkey brain, including the basal ganglia. The alpha3/alpha6-selective antagonist alpha-conotoxin MII maximally inhibited 50% of binding in the caudate-putamen and had no effect on 125I-epibatidine binding in the frontal cortex or thalamus. In contrast, inhibition experiments with nicotine, cytisine, and 3-(2(S)-azetidinylmethoxy)pyridine-2HCl (A85380) showed a complete block of 125I-epibatidine binding in all regions investigated and did not discriminate between the alpha-conotoxin MII-sensitive and -insensitive populations in the striatum. To assess the effects of nigrostriatal damage, monkeys were rendered parkinsonian with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Animals with moderate striatal damage (dopamine transporter levels approximately 30% of control) had a 40 to 50% decrease in 125I-epibatidine binding. Inhibition studies showed that the decrease in epibatidine binding was due to loss of alpha-conotoxin MII-sensitive nAChRs. Monkeys with severe nigrostriatal damage (dopamine transporter levels < or = 5% of control) exhibited a 55 to 60% decrease in 125I-epibatidine binding, which seemed to be due to a complete loss of alpha-conotoxin MII nAChRs and a partial loss of other nAChR subtypes. These results show that nAChRs expressed in the primate striatum have similar affinities for nicotine, cytisine, and A85380, that alpha-conotoxin MII discriminates between nAChR populations in the caudate and putamen, and that alpha-conotoxin MII-sensitive nAChRs are selectively decreased after MPTP-induced nigrostriatal damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.