Abstract

BackgroundCadmium exposure induces dermatotoxicity and epidermal barrier disruption and leads to the development of various pathologies. HaCaT cells are immortalized human keratinocytes that are widely used as alternatives to primary human keratinocytes, particularly for evaluating cadmium toxicity. HaCaT cells bear two gain-of-function (GOF) mutations in the TP53 gene, which strongly affect p53 function. Mutant forms of p53 are known to correlate with increased resistance to various stimuli, including exposure to cytotoxic substances. In addition, keratin 17 (KRT17) was recently shown to be highly expressed in HaCaT cells in response to genotoxic stress. Moreover, p53 is a direct transcriptional repressor of KRT17. However, the impact of TP53 mutations in HaCaT cells on the regulation of cell death and keratin 17 expression is unclear. In this study, we aimed to evaluate the impact of p53 on the response to Cd-induced cytotoxicity. Methods and resultsEmploying the MTT assay and Annexin V/propidium iodide staining, we demonstrated that knockout of TP53 leads to a decrease in the sensitivity of HaCaT cells to the cytotoxic effects of cadmium. Specifically, HaCaT cells with TP53 knockout (TP53 KO HaCaT) exhibited cell death at a cadmium concentration of 10 μM or higher, whereas wild-type cells displayed cell death at a concentration of 30 μM. Furthermore, apoptotic cells were consistently detected in TP53 KO HaCaT cells upon exposure to low concentrations of cadmium (10 and 20 μM) but not in wild-type cells. Our findings also indicate that cadmium cytotoxicity is mediated by reactive oxygen species (ROS), which were significantly increased only in TP53 knockout cells treated with 30 μM cadmium. An examination of proteomic data revealed that TP53 knockout in HaCaT cells resulted in the upregulation of proteins involved in the regulation of apoptosis, redox systems, and DNA repair. Moreover, RT‒qPCR and immunoblotting showed that cadmium toxicity leads to dose-dependent induction of keratin 17 in p53-deficient cells but not in wild-type cells. ConclusionsThe connection between mutant p53 in HaCaT keratinocytes and increased resistance to cadmium toxicity was demonstrated for the first time. Proteomic profiling revealed that TP53 knockout in HaCaT cells led to the activation of apoptosis regulatory circuits, redox systems, and DNA repair. In addition, our data support the involvement of keratin 17 in the regulation of DNA repair and cell death. Apparently, the induction of keratin 17 is p53-independent but may be inhibited by mutant p53.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.