Abstract

In the budding yeast Saccharomyces cerevisiae, loss of mitochondrial DNA (rho0) can induce the retrograde response under appropriate conditions, resulting in increased replicative lifespan (RLS). Although the retrograde pathway has been extensively elaborated, the nature of the mitochondrial signal triggering this response has not been clear. Mitochondrial membrane potential (MMP) was severely reduced in rho0 compared to rho+ cells, and RLS was concomitantly extended. To examine the role of MMP in the retrograde response, MMP was increased in the rho0 strain by introducing a mutation in the ATP1 gene, and it was decreased in rho+ cells by deletion of COX4. The ATP1-111 mutation in rho0 cells partially restored the MMP and reduced mean RLS to that of rho+ cells. COX4 deletion decreased MMP in rho+ cells to a value intermediate between rho+ and rho0 cells and similarly increased RLS. The increase in expression of CIT2, the diagnostic gene for the retrograde response, seen in rho0 cells, was substantially suppressed in the presence of the ATP1-111 mutation. In contrast, CIT2 expression increased in rho+ cells on deletion of COX4. Activation of the retrograde response results in the translocation of the transcription factor Rtg3 from the cytoplasm to the nucleus. Rtg3–GFP translocation to the nucleus was directly observed in rho0 and rho+ cox4Δ cells, but it was blunted in rho0 cells with the ATP1-111 mutation. We conclude that a decrease in MMP is the signal that initiates the retrograde response and leads to increased RLS.

Highlights

  • Yeast replicative lifespan (RLS) has been studied extensively to understand genetic determinants of lifespan and the mechanisms of aging

  • When corrected for DiOC6 uptake in the presence of FCCP and normalized for mitochondrial mass as determined by Mitotracker Green (MTG) staining, rho0 cells had an average of only 14% of the membrane potential (MMP) compared to rho+

  • We have shown that a decrease in MMP is the event proximal to the mitochondrion that signals the retrograde response

Read more

Summary

Introduction

Yeast replicative lifespan (RLS) has been studied extensively to understand genetic determinants of lifespan and the mechanisms of aging. Aging is a complicated multifactorial process and a number of major determinants have been described. These include genome stability, metabolism, stress resistance, and chromatindependent gene regulation, in addition to random (stochastic) events (Jazwinski, 1999, 2005). We have previously demonstrated one mechanism of lifespan determination that results from mitochondrial dysfunction. This mechanism, termed the retrograde response, is a form of inter-organelle signaling that impacts nuclear gene expression, compensates for the loss of tricarboxylic acid cycle intermediates, and increases RLS (Kirchman et al, 1999; Liu and Butow, 1999). Deletion of mitochondrial DNA activates this mechanism (Kirchman et al, 1999), but it appears to function during normal yeast aging during which the extent of activation of the retrograde response is commensurate with accumulating mitochondrial dysfunction (Borghouts et al, 2004)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.