Abstract

Metastatic disease remains the primary cause of death for individuals with T cell acute lymphoblastic leukemia (T-ALL). microRNAs (miRNAs) play important roles in the pathogenesis of T-ALL by inhibiting gene expression at posttranscriptional levels. The goal of the current project is to identify any significant miRNAs in T-ALL metastasis. We observed miR-146b-5p to be downregulated in T-ALL patients and cell lines, and bioinformatics analysis implicated miR-146b-5p in the hematopoietic system. miR-146b-5p inhibited the migration and invasion in T-ALL cells. Interleukin-17A (IL-17A) was predicted to be a target of miR-146b-5p; this was confirmed by luciferase assays. Interestingly, T-ALLpatients and cell lines secreted IL-17A and expressed the IL-17A receptor (IL-17RA). IL-17A/IL-17RA interactions promoted strong T-ALL cell migration and invasion responses. Gene set enrichment analysis (GSEA) and quantitative polymerase chain reaction (qPCR) analysis indicated that matrix metallopeptidase-9 (MMP9), was a potential downstream effector of IL-17A activation, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling was also implicated in this process. Moreover, IL-17A activation promoted T-ALL cell metastasis to the liver in IL17A -/- mouse models. These results indicate that reduced miR-146b-5p expression in T-ALL may lead to the upregulation of IL-17A, which then promotes T-ALL cell migration and invasion by upregulating MMP9 via NF-κB signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.