Abstract

Oxidation of methionine residues to methionine sulfoxide scavenges reactive species, thus protecting against oxidative stress. Reduction of the sulfoxide back to methionine by methionine sulfoxide reductases creates a cycle with catalytic efficiency. Protection by the methionine sulfoxide reductases is well documented in cultured cells, from microorganisms to mammals. However, knocking out one or two of the 4 mammalian reductases had little effect in mice that were not stressed. We hypothesized that the minimal effect is due to redundancy provided by the 4 reductases. We tested the hypothesis by creating a transgenic mouse line lacking all 4 reductases and predicted that this mouse would be exceptionally sensitive to oxidative stress. The mutant mice were phenotypically normal at birth, exhibited normal post-natal growth, and were fertile. Surprisingly, rather than being more sensitive to oxidative stress, they were more resistant to both cardiac ischemia-reperfusion injury and to parenteral paraquat, a redox-cycling agent. Resistance was not a result of hormetic induction of the antioxidant transcription factor Nrf2 nor activation of Akt. The mechanism of protection may be novel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.