Abstract

Oxidative stress is caused by an increase in reactive oxygen species (ROS) relative to the antioxidant defense system. An increase in ROS is known to decrease vascular function, increase inflammatory cytokines, and promote adipocyte hypertrophy. A known regulator of the oxidative stress response is the heat shock protein, heme-oxygenase 1 (HO-1), which is induced by cobalt protoporphyrin IX (CoPP). Menin was recently found to promote the sustained expression of heat shock proteins and is implicated in the regulation of oxidative stress. In this study, we investigated how changes in menin expression affected adipogenesis via the interaction between endothelial cells and adipocytes in response to CoPP treatment during oxidative stress. Using angiotensin II (Ang II) to induce oxidative stress in endothelial cells and adipocytes, we observed the induction of various cytokines including EGF, VEGF, angiogenin, IL-6, and MCP-1. Preadipocytes cultured in endothelial cell conditioned media treated with Ang II showed no changes in differentiation markers. Preadipocytes treated with the endothelial cell-conditioned media pretreated with CoPP resulted in an increase in the number of adipocytes, which expressed higher levels of adipocyte differentiation markers in direct correlation with the complete downregulation of the stress response regulator, menin. This change was not detected in adipocytes directly treated with CoPP alone. Therefore, we concluded that loss of menin is associated with the maturation of adipocytes induced by conditioned media from endothelial cells treated with CoPP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.