Abstract

Previous studies including ours demonstrated that methyl-CpG-binding domain 2 (MBD2) acts as a reader to decipher DNA methylome-encoded information. We thus in the current study used Mbd2-/- mice as a model to dissect the impact of high-fat diet (HFD) on DNA methylome relevant to the pathoetiology of obesity. It was interestingly noted that mice deficient in Mbd2 were protected from HFD-induced obesity and insulin resistance. Mechanistic study revealed that HFD rendered epididymal adipose tissues to undergo a DNA methylation turnover as evidenced by the changes of methylation levels and patterns. Specifically, HFD was noted with higher potency to induce DNA hypomethylation in genes relevant to energy storage than that in genes associated with energy expenditure. As a result, arrays of genes were subjected to expression changes, which led to an altered homeostasis for energy storage and expenditure in favor of obesity development. Loss of Mbd2 resulted in impaired implementation of above DNA methylation changes associated with altered energy homeostasis, which then protected mice from HFD-induced obesity and insulin resistance. Those data would provide novel insight into the understanding of the pathoetiology underlying obesity with potential for developing effective therapies against obesity in clinical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.