Abstract

ObjectiveLecithin cholesterol acyltransferase (LCAT) plays a pivotal role in HDL metabolism but its influence on atherosclerosis remains controversial for decades both in animal and clinical studies. Because lack of cholesteryl ester transfer protein (CETP) is a major difference between murine and humans in lipoprotein metabolism, we aimed to create a novel Syrian Golden hamster model deficient in LCAT activity, which expresses endogenous CETP, to explore its metabolic features and particularly the influence of LCAT on the development of atherosclerosis. MethodsCRISPR/CAS9 gene editing system was employed to generate mutant LCAT hamsters. The characteristics of lipid metabolism and the development of atherosclerosis in the mutant hamsters were investigated using various conventional methods in comparison with wild type control animals. ResultsHamsters lacking LCAT activity exhibited pro-atherogenic dyslipidemia as diminished high density lipoprotein (HDL) and ApoAI, hypertriglyceridemia, Chylomicron/VLDL accumulation and significantly increased ApoB100/48. Mechanistic study for hypertriglyceridemia revealed impaired LPL-mediated lipolysis and increased very low density lipoprotein (VLDL) secretion, with upregulation of hepatic genes involved in lipid synthesis and transport. The pro-atherogenic dyslipidemia in mutant hamsters was exacerbated after high fat diet feeding, ultimately leading to near a 3- and 5-fold increase in atherosclerotic lesions by aortic en face and sinus lesion quantitation, respectively. ConclusionsOur findings demonstrate that LCAT deficiency in hamsters develops pro-atherogenic dyslipidemia and promotes atherosclerotic lesion formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.