Abstract

The wound microenvironment comprises constituents, such as the extracellular matrix (ECM), that regulate with temporal and spatial precision, the migratory, proliferative, and contractility of wound cells. Prompt closure of the wound is an early and critical phase of healing and beta1 integrins are important in this process. We previously reported a marked increase in integrin alpha9beta1 expression in epidermal keratinocytes in cutaneous and corneal wounds. However, the functional role of keratinocyte alpha9beta1 during re-epithelialization is unknown and analysis has been precluded by the lethal phenotype of integrin alpha9beta1 knockout mice. We now report that in conditional integrin alpha9 knockout (K14-alpha9 null) mice, normal proliferation occurs in epidermal keratinocytes and corneal basal cells. Normal epidermal keratinocyte morphology is also retained. However, corneal basal cell morphology and epithelial thickness are altered, suggesting that loss of integrin alpha9beta1 results in abnormal corneal differentiation. In cutaneous wounds, the number of proliferating epidermal keratinocytes is significantly reduced in K14-alpha9 null mice compared with alpha9(fl/-) mice, but not in Cre (control) mice. The decreased keratinocyte proliferation observed in K14-alpha9 null mice negatively impacts healing, resulting in a thinner migrating epithelium, demonstrating that alpha9beta1 is crucial for efficient and proper re-epithelialization during cutaneous wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.