Abstract

Ischemic cardiomyopathy is the major cause of heart failure and a significant cause of morbidity and mortality. The degree of left ventricular dysfunction in this setting is often out of proportion to the amount of overtly infarcted tissue, and how decreased delivery of oxygen and nutrients leads to impaired contractility remains incompletely understood. The Prolyl Hydroxylase Domain-Containing Protein (PHD) prolyl hydroxylases are oxygen-sensitive enzymes that transduce changes in oxygen availability into changes in the stability of the hypoxia-inducible factor transcription factor, a master regulator of genes that promote survival in a low-oxygen environment. We found that cardiac-specific PHD inactivation causes ultrastructural, histological, and functional changes reminiscent of ischemic cardiomyopathy over time. Moreover, long-term expression of a stabilized hypoxia-inducible factor alpha variant in cardiomyocytes also led to dilated cardiomyopathy. Sustained loss of PHD activity and subsequent hypoxia-inducible factor activation, as would occur in the setting of chronic ischemia, are sufficient to account for many of the changes in the hearts of individuals with chronic coronary artery disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.