Abstract

HSF1 is a transcription factor that plays a key role in the response to heat stress and was previously shown by us to also be essential for importation of p53 into the nucleus. Here we extend these studies and show that loss of HSF1 renders cells more sensitive to killing by ionizing radiation. Cells that lack a functional HSF1 were unable to arrest in G(2) after exposure to ionizing radiation, suggesting that HSF1 activity was essential for activation of this cell cycle checkpoint. In addition, cells with no HSF1 showed a reduced capacity to repair radiation-induced double-stranded DNA breaks. We found that in these cells 53BP1 did not accumulate at sites of DNA damage, suggesting that HSF1 was also essential for the functioning of this DNA damage mediator. Taken together our results indicate that HSF1 plays an important role in checkpoint activation and DNA repair and suggest that there is overlap between the heat stress response pathway and the pathway that responds to ionizing radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.