Abstract

Biological systems evolved to be functionally robust in uncertain environments, but also highly adaptable. Such robustness is partly achieved by genetic redundancy, where the failure of a specific component through mutation or environmental challenge can be compensated by duplicate components capable of performing, to a limited extent, the same function. Highly variable environments require very robust systems. Conversely, predictable environments should not place a high selective value on robustness. Here we test this hypothesis by investigating the evolutionary dynamics of genetic redundancy in extremely reduced genomes, found mostly in intracellular parasites and endosymbionts. By combining data analysis with simulations of genome evolution we show that in the extensive gene loss suffered by reduced genomes there is a selective drive to keep the diversity of protein families while sacrificing paralogy. We show that this is not a by-product of the known drivers of genome reduction and that there is very limited convergence to a common core of families, indicating that the repertoire of protein families in reduced genomes is the result of historical contingency and niche-specific adaptations. We propose that our observations reflect a loss of genetic redundancy due to a decreased selection for robustness in a predictable environment.

Highlights

  • Living organisms evolved to be functional in frequently harsh and variable environments, buffering internal molecular noise, genetic variation and unpredictable environmental fluctuations

  • Biosynthetic genes are frequently lost. It has been a matter of debate what decides whether a gene can be lost in evolution, and intracellular bacteria have been used as model systems to study these processes

  • We propose that when adopting an intracellular lifestyle, these bacteria extensively lost duplicated genes

Read more

Summary

Introduction

Living organisms evolved to be functional in frequently harsh and variable environments, buffering internal molecular noise, genetic variation and unpredictable environmental fluctuations. Such ability is termed robustness [1]. One common source of robustness is genetic redundancy, in which one or more genes can perform the same function [2]. The exact contribution of genetic redundancy to the robustness of biological systems has, been a subject of considerable debate. After duplication the two copies will have identical functions and the loss of one by the accumulation of mutations is buffered by the other, having no fitness cost [3]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.