Abstract

BackgroundHangul (Cervus elaphus hanglu), the eastern most subspecies of red deer, is now confined only to the mountains in the Kashmir region of Jammu & Kashmir State of India. It is of great conservation significance as this is the last and only hope for Asiatic survivor of the red deer species in India. Wild population of free ranging hangul deer inhabiting in and around Dachigam National Park was genetically assessed in order to account for constitutive genetic attributes of hangul population using microsatellite markers.ResultsIn a pool of 36 multi-locus genotypes, 30 unique individuals were identified based on six microsatellite loci. The estimated cumulative probability of identity assuming all individuals were siblings (PID sibs) was 0.009 (9 in 1000). Altogether, 49 different alleles were observed with mean (± s.e.) allelic number of 8.17 ± 1.05, ranging from 5 to 11 per locus. The observed heterozygosity ranged between 0.08 and 0.83, with mean 0.40 ± 0.11 and the inbreeding coefficient ranged between −0.04 and 0.87 with mean 0.38 ± 0.15. Majority of loci (5/6) were found to be informative (PIC value > 0.5). All loci deviated from Hardy-Weinberg equilibrium except Ca-38 (P > 0.05) and none of the pairs of loci showed significant linkage disequilibrium except the single pair of Ca-30 and Ca-43 (P < 0.05).ConclusionsThe preliminary findings revealed that hangul population is significantly inbred and exhibited a low genetic diversity in comparison to other deer populations of the world. We suggest prioritizing the potential individuals retaining high heterozygosity for ex situ conservation and genetic monitoring of the hangul population should be initiated covering the entire distribution range to ensure the long term survival of hangul. We speculate further ignoring genetics attributes may lead to a detrimental effect which can negatively influence the reproductive fitness and survivorship of the hangul population in the wild.

Highlights

  • Hangul (Cervus elaphus hanglu), the eastern most subspecies of red deer, is confined only to the mountains in the Kashmir region of Jammu & Kashmir State of India

  • Hangul or Kashmir red deer (Cervus elaphus hanglu), one of the four eastern most distributed subspecies of red deer found in the Indian sub-continent, is of great conservation significance since it is the only Asiatic survivor of the red deer inhabiting the broadleaf forest and temperate grassland habitats of Zanskar mountain range in Jammu and Kashmir [1]

  • Of the total samples (n = 84) collected, 35 samples could not be used for the genetic analysis as these hair samples were either devoid of roots or too few in numbers to go for DNA extraction

Read more

Summary

Introduction

Hangul (Cervus elaphus hanglu), the eastern most subspecies of red deer, is confined only to the mountains in the Kashmir region of Jammu & Kashmir State of India. It is of great conservation significance as this is the last and only hope for Asiatic survivor of the red deer species in India. Hangul or Kashmir red deer (Cervus elaphus hanglu), one of the four eastern most distributed subspecies of red deer found in the Indian sub-continent, is of great conservation significance since it is the only Asiatic survivor of the red deer inhabiting the broadleaf forest and temperate grassland habitats of Zanskar mountain range in Jammu and Kashmir [1]. The information on the genetic diversity of hangul population is lacking while similar studies have been conducted on other sympatric red deer species [10,11,12]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.