Abstract

AbstractChromatin architecture has a profound effect on the gene expression in eukaryotes. It is constantly modulated in the cells in response to different stress condition and during the normal physiological process in the cell. The chromatin is also modulated during the cell growth and division, where several proteins involved during the cell cycle are synthesized, and hence the gene expression profile and chromatin state of an actively dividing cell differ from that of a resting cell in G0 state. Candida albicans, which is a harmless commensal in human host and an opportunistic fungal pathogen also show dynamic chromatin architecture, and this is facilitated by the several epigenetic determinants, which modulate the chromatin architecture. In this context, RSC (Remodel the structure of chromatin) complex in C. albicans is previously shown to be crucial for cell viability and to carry out several DNA templated events, like kinetochore function and cohesion enrichment. To correlate the role of RSC in kinetochore function with the chromatin architecture at centromeric and non-centromeric region, here we have shown that the chromatin at non-CEN7 regions shows lesser occupancy of nucleosomes in absence of Sth1 protein (catalytic component of RSC complex), which is due to the reduced binding but not due to the reduced expression of the histones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call