Abstract

BackgroundPADI6 is a component of the subcortical maternal complex, a group of proteins that is abundantly expressed in the oocyte cytoplasm, but is required for the correct development of early embryo. Maternal-effect variants of the subcortical maternal complex proteins are associated with heterogeneous diseases, including female infertility, hydatidiform mole, and imprinting disorders with multi-locus imprinting disturbance. While the involvement of PADI6 in infertility is well demonstrated, its role in imprinting disorders is less well established.ResultsWe have identified by whole-exome sequencing analysis four cases of Beckwith-Wiedemann syndrome with multi-locus imprinting disturbance whose mothers are carriers of PADI6 variants. In silico analysis indicates that these variants result in loss of function, and segregation analysis suggests they act as either recessive or dominant-negative maternal-effect mutations. Genome-wide methylation analysis revealed heterogeneous and extensively altered methylation profiles of imprinted loci in the patients, including two affected sisters, but not in their healthy siblings.ConclusionOur results firmly establish the role of PADI6 in imprinting disorders. We report loss-of-function maternal-effect variants of PADI6 that are associated with heterogeneous multi-locus imprinting disturbances in the progeny. The rare finding of two siblings affected by Beckwith-Wiedemann syndrome suggests that in some cases, familial recurrence risk of these variants may be high. However, the heterogeneous phenotypes of the other pedigrees suggest that altered oocyte PADI6 function results in stochastic maintenance of methylation imprinting with unpredictable consequences on early embryo health.

Highlights

  • PADI6 is a component of the subcortical maternal complex, a group of proteins that is abundantly expressed in the oocyte cytoplasm, but is required for the correct development of early embryo

  • Since multi-locus imprinting disturbance (MLID) is frequently associated with KCNQ1OT1:TSS-Differentially methylated regions (DMRs) loss of methylation (LOM), we extended the DNA methylation analysis to five further DMRs that are frequently hypomethylated in Beckwith-Wiedemann syndrome (BWS) patients [5]

  • We report on four cases of BWS with MLID, which arise from maternaleffect loss-of-function PADI6 mutations, and characterize their genomic methylation profiles

Read more

Summary

Introduction

PADI6 is a component of the subcortical maternal complex, a group of proteins that is abundantly expressed in the oocyte cytoplasm, but is required for the correct development of early embryo. Differential DNA methylation between the maternally and paternally inherited chromosomes controls the monoallelic and parent-of-origin dependent expression of the imprinted genes, a group of about 100 loci with important roles in fetal growth, metabolism, and behavior [1]. Genetic and epigenetic defects altering the expression of imprinted genes are associated with 12 rare clinical conditions, known as imprinting disorders [2]. Among this group of pathologies, the Beckwith-Wiedemann syndrome (BWS, OMIM #130650, prevalence of 1:10,340 live births [3]) is characterized by macrosomia, macroglossia, abdominal wall defects, neonatal hypoglycemia, lateralized overgrowth, and predisposition to Wilms tumor and other embryonal cancers [4]. The molecular defects of BWS are as follows: loss of methylation (LOM) of the KCNQ1OT1:TSS-DMR that is present in 50% of cases, mosaic segmental paternal unidisomy of chromosome 11p15 (upd(11)pat) in 20%, gain of methylation (GOM) of the H19/IGF2:IG-DMR in 5–10%, and maternal loss-of-function mutations of CDKN1C gene in 5% [4]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.