Abstract

Prostaglandin E2 (PGE2) is a bioactive lipid mediator that exerts its biological function through interaction with four different subtypes of E-Prostanoid receptor namely EP1, EP2, EP3 and EP4. It has been known that EP2 receptor is differentially over-expressed in the epithelia of inflamed human colonic mucosa. However, the significance of the differential expression in altering epithelial barrier function is not known. In this study, we used Caco-2 cells expressing EP2 receptor, either high (EP2S) or low (EP2A), as a model epithelia and determined the barrier function of these cell monolayers by measuring the trans epithelial resistance (TER). Basal TER of EP2A (but not EP2S) monolayer was significantly lower suggesting a loss of colonic epithelial barrier integrity. In comparison, the TER of wild type Caco-2 was decreased in response to an EP2 receptor specific antagonist (AH-6809) indicating an important role for EP2 receptor in the maintenance of epithelial barrier function. The decrease TER in EP2A monolayer corresponded with a significant loss of the tight junction (TJ) protein claudin-4 without affecting other major TJ proteins. Similarly, EP2 receptor antagonism/siRNA based silencing significantly decreased claudin-4 expression in EP2S cells. Surprisingly, alteration in claudin-4 was not transcriptionally regulated in EP2A cells but rather undergoes increased proteosomal degradation. Moreover, among the TER compromising cytokines examined (IL-8, IL-1β, TNF-α, IFN-γ) only IFN-γ was significantly up regulated in EP2A cells. However, IFN-γ did not significantly decreased claudin-4 expression in Caco-2 cells indicating no role for IFN-γ in degrading claudin-4. We conclude that differential down-regulation of EP2 receptor play a major role in compromising colonic epithelial barrier function by selectively increasing proteosomal degradation of claudin-4.

Highlights

  • Prostaglandins E2 (PGE2) is an important bioactive lipid produced by variety of different tissues including the gastrointestinal (GI) tract [1,2,3] were it modulates both physiological and pathological functions of the gut [4]

  • To ascertain if the differential EP2 receptor expression had any effect on epithelial monolayer resistance, we assessed basal trans epithelial resistance (TER) of the cells grown to confluence on transwell plates

  • It is clear that lack of EP2 receptor almost completely abrogated the TER of Caco-2 colonic epithelial monolayer through a mechanism independent of endogenous PGE2

Read more

Summary

Introduction

Prostaglandins E2 (PGE2) is an important bioactive lipid produced by variety of different tissues including the gastrointestinal (GI) tract [1,2,3] were it modulates both physiological and pathological functions of the gut [4]. PGE2 signals via four different subtypes of EP receptors namely EP1, EP2, EP3 and EP4 [7]. Altered/differential expression of EP receptor subtypes has been reported in various disease conditions in the gut [9,10,11,12,13]. The role of such alterations in modulating biological functions of PGE2 is not clearly understood

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.